
TD 16 : Convexité Indications
Exercices théoriques sur la convexité

1 ⋆⋆ Soit f : R→ R et g : R→ R deux fonctions
convexes.

1) Montrer que f +g est convexe.

2) Montrer que si g est croissante, alors g ◦ f est
convexe.

3) Dans le cas général, peut-on affirmer que g◦ f est
convexe ?

Utiliser la définition.

2 ⋆⋆⋆ Soit f : R→ R une fonction convexe.

1) On suppose f dérivable. Montrer que si f admet un
minimum local en a, alors ce minimum est global.

2) Même question sans l’hypothèse “ f dérivable”.

3) Que peut-on dire si f admet un maximum local en
a ?

1) Comme f est dérivable, on peut utiliser toutes les
propriétés spécifiques aux fonctions convexes dé-
rivables. L’une d’elle est particulièrement adaptée
puisque f admet un extremum local en a...

2) Raisonner par l’absurde (en faisant un dessin pour
se donner une idée d’où viendrait une contradic-
tion). On peut aussi utiliser l’inégalité des pentes.

3) Un dessin permet d’en déduire ce qu’il faut mon-
trer pour f . Ensuite, raisonner par l’absurde, ou via
l’inégalité des pentes !

3 ⋆⋆⋆ Soit f : R→ R une fonction convexe ma-
jorée. Montrer que f est constante.
Raisonner par l’absurde en supposant f non constante.
Il existe donc a,b ∈ R tels que a < b et f (a) ̸= f (b).
Utiliser ensuite une propriété que vérifie une fonction
convexe...

Inégalités de convexité

4 ⋆⋆ En utilisant un argument de convexité, mon-
trer les assertions suivantes :

∀x > 0 ln(x)≤ x−1

∀x ∈
[
0,

π

2

] 2
π

x ≤ sinx ≤ x

Remarquer que ce sont des inégalités qui font intervenir
des fonctions affines. Faire le lien avec la méthode du
cours.

5 ⋆⋆ Montrer que x 7→ ln(lnx) est concave sur]
1,+∞

[
. En déduire :

∀a,b > 1 ln
(

a+b
2

)
≥
√

lna lnb

Utiliser la définition (ou encore Jensen avec 2 points).

6 ⋆⋆ Soit n ∈ N∗ et x1, · · · ,xn ∈ R. Montrer que

(x1 + . . .+ xn)
2 ≤ n(x2

1 + . . .+ x2
n)

Des inégalités qui font intervenir n points x1, · · · ,xn ? Il
faut utiliser Jensen ! Suivre la méthode du poly.

7 ⋆⋆⋆ Soit f : x 7→ ln(1+ ex) et n ∈ N∗.

1) La fonction f est-elle convexe ou concave ?

2) En déduire que pour tous x1, · · · ,xn > 0, on a :

1+ n

√
n

∏
k=1

xk ≤ n

√
n

∏
k=1

(1+ xk)

3) En déduire que pour tous x1, · · · ,xn > 0 et
y1, · · · ,yn > 0, on a :

n

√
n

∏
k=1

xk +
n

√
n

∏
k=1

yk ≤ n

√
n

∏
k=1

(xk + yk)

Pour la question 2, si on part de l’inégalité de Jensen
pour f appliquée à x1, · · · ,xn, on tombe sur un os. Il faut
peut-être l’appliquer à autre chose que x1, · · · ,xn, mais
à ce stade on ne peut pas le voir.
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Repartir de l’inégalité qu’on veut montrer et appliquer
ln pour transformer l’un des produits en somme. On

obtient alors un terme de la forme
1
n

n

∑
k=1

ln(1+ xk), ce

qui n’est pas f (xk) mais plutôt f (lnxk) !

8 ⋆⋆⋆ Soit p,q > 0 tels que
1
p
+

1
q
= 1.

1) Montrer que pour tous a,b > 0, on a :

ab ≤ 1
p

ap +
1
q

bq

2) En déduire que pour tous n ∈ N∗ et x1, · · · ,xn > 0,
on a

n

∑
k=1

xkyk ≤

(
n

∑
k=1

xp
k

)1/p( n

∑
k=1

yq
k

)1/q

1) Appliquer la fonction ln pour transformer le produit
ab en somme.

2) Appliquer encore le ln ! Puis utiliser le résultat du 1.
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